Effect of Phosphate Solubilising Bacteria
on Vigna Radiata (L.)Wilczek

Author - 

Krishna Kumari
Ashok Kumar

ABSTRACT

The present study was conducted to investigate the effect of different concentrations( 10% 20% 30%) of phosphate solubilizing bacteria (PSB) on seed germination, plant growth and proline content in nodules and leaves of mung bean (Vigna radiata L.). An experiment was carried out with the seeds obtained of mung bean sown in field with PSB and without PSB. The results reveal on overall increase in all parameters in the inoculated plants than their comparable uninoculated ones. Phosphate solubilizing bacteria with 30% concentration, on Vigna radiata(L.) showed the higher effect on seed germination, plant growth, fresh and dry matter, protein, leghaemoglobin and chlorophyll content as compared to 10% 20% concentration of phosphate solubilizing bacteria.

Keywords

Vigna radiata(L.) phosphate solubilizing bacteria, protein, leghaemoglobin and chlorophyll.

References

  • Ali, E.,Hossein A., Khani, A. and M. Rashtbar (2012). Effect of plant growth promoting Bacteria on the morphophysiological properties of button mushroom Agaricus bisporus in two different culturing beds. International Research Journal of Applied and Basic Sciences. 3(1):203- 212. 

  • Appleby C.A. and F.J. Bergerson (1980). Preparation and experimental use of leghaemoglobin. In: Bergersen F. J., ed. Methods for evaluating biological nitrogen fixation. New York: Wiley, 315-336. 

  • Awomi, T. A., Singh, A. K., Kumar, M. and L. J. Bordoloi (2012). Effect of Phosphorous, Molybdenum and Cobalt Nutrition on Yield and Quality of Mungbean (Vigna radiata L.) in Acidic Soil of Northeast India Journal of Hill Farming. 25(2):22-26. 

  • Bradford M.M. (1976). Biochemical methods. New age International Publishers, New Delhi pp: 42-43. 

  • Bates L., Waldren R.P. and I.D. Teare (1973). Rapid determination of free proline water stress studies. Plant Soil.39: 205-208. 

  • Chabot, R., Antoun H. and M. P. Cescas (1993). Stimulation of the growth of maize and lettuce by inorganic phosphate solubilizing microorganisms. Journal of Microbiology. 39(10): 945-947. 

  • Dinekar, N., Nagayothi, P. C., Suresh, S. And T. Damodharam (2009). Cadmium induced changes on proline, antioxidant enzymes, nitrate and nitrite reductases in Arachis hypogaea L. Journal of Environmental Biology. 30: 289- 294. 

  • Erdogan O. and K. Benlioglu (2010). Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions. Biol Control. 53:39–45

  • Gain, S., and A. C. Gaur (1991).Thermotolrant phosphate solubilizing microorganisms and their interaction with mungbean(V. radiata L.). Plant Soil. 133:141-149. 

  • Gairola, S., Umar, S. and S. Suryapani (2009). Nitrate accumulation, growth and leaf quality of spinach beet (Beta vulgaris Linn.) as affected by N PK fertilization with special reference to potassium. Indian J. Sci. Tech., 2(2):35-40. 

  • Gajewska and M. Sklodwska (2005). Antioxidant responses and proline level in legumes and roots of pea plants subjected to nickel stress. Acta Physiol. Plant. 27:329- 340. 

  • Gholami, A., Shahsavani, S. and S. Nezarat( 2009). The effect of Plant Growth Promoting Rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Acad. Sci. Eng. Technol.,49: 19-24. 

  • Hare, P. D., Cress, W. A. and J. WV. Staden (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environment. 21: 535-553. 

  • Jesus Mercado B.,P. and A. H. M Bakker (2007). Interactions between plants and beneficial Pseudomonas spp. : Exploiting bacterial traits for crop protection. Antonine Van Leeuwenhoek. 92: 367-389 

  • Kelel, M., Getaw, A. and G. Wessel (2014). Isolation of phosphate solubilizing bacteria from acacia tree rhizosphere soil. Journal of Microbiology and Biotechnology Research.4 (5) :9-13. 

  • Khan, M. S., Zaidi A., Ahmed M., Oves M. and P.A. Wani (2010). Plant growth promotion by phosphate solubilizing fungicurrent perspective. Arch. Agron. Soil Sci.56:73-98 

  • Devi, K. N. (2009). Response of soyabean(Glycine max( L.) Merrill) to sources and levels of phosphorous. Journal of BioresourcesTechnology. pp. 1-8. 

  • Koocheki (2008).The role of Pseudomonas fluorescence strains in growth and phosphate concentration of rapeseed (Brassica napus L.). Journal of Plant Physiology. 3(4): 829-853. 

  • Kumar, A. (2004). Growth and photosynthetic response of longbean (V. ungiculata) and mungbean (V. radiata L.) response to fertilization. J. of Animal & Plant sciences. 24(2): 573-578. 

  • Monika K., Pheeraj, V., Hassan, Z. U. and D. Umeshkumar (2009). Effect of phosphate solubilizing bacteria (PSB) morphological on characters of Lens culinaris Medic. International Journal. 1(2): 5-9. 

  • Qureshi, M. A., Shakir, M. A., Iqhal, A., Akhtar, N . and A. Khan (2011). Co-Inoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mung bean (V. radiata L.). Journal of Animal and Plant Sccience. 21: 491-497. 

  • Rattanaworgsa, N. (1993). The 19thInternational Mung bean Nursery. Trial ARC-AVRDC Training Report. 

  • Gangwar, R.K. (2013). Combined effects of plant growth promoting rhizobacteria and fungi on mung bean (Vigna radiata L.). International Journal of Pharmaceutical Sciences and Research.4(11): 4422-26. 

  • Singh, R. K. (2012). Influence of Azospirillum and phosphate solubilizing bacteria inoculation on the growth and yield of foxtail millet. Journal of Microbiology Biotech. Research. 2(4): 558-565. 

  • Saber, K., Nahla, L. D. and A. Chedly (2005). Effect of phosphorous on nodule formation and nitrogen fixation in bean. Agron. Sustain Dev. 25:389-393. 

  • Singh, B. C. And S. M. Hiremath (1990). Effect of rhizobacterium on nodulation and leghaemoglobin in mungbean(V. radiata . L.). Current Research pp: 101-102. 

  • Swaminatan, R., Singh, K. and V. Nepallia (2012). Insect Pests of Green Gram (Vigna radiata L.) Wilczek and Their Manegment. In Tech., 51:(1)978-953. 

  • Tan, B. S., Lonic A. A., Morris M. B. and P.D. Rthjen (2011). The an amino acid transporter SNAT2 mediates L-Prolineinduced differentiation of ES cells. American journal Physiol. Cell Physiology. 300:C1270-C1279. 

  • Tarafdar J. C. and J. P. Singh (1992). Rhizosphereic microflora as influenced by sulphur application, herbicide and Rhizobium inoculation in summer mung bean (V. radiata L.).Journal of Indian society of Soil Sci. 50:127-129. 

  • Taylor, V., and J.V. D. K. Kumar Rao (1997). Food legumes for nutritional security and sustainable. Agrc. International Food Legumes Research Conference . 1:18-20. 

  • Georgiena, T., Nikolova, D. and Y. Evstatieva (2014). Growth characteristics of Pseudomonas putida strains and effect of humic substances on cell density during batch cultivation. Bulgarian Journal ofAgricultural Science 20(1): 82-86. 

  • Umang, B., Kamlesh P. and U.B. Trivedi (2013). Optimization of indole acetic acid production by Pseudomonas putida UBI and it effect as plant growth promoting rhizobacteria on mustard (Brassica nigra). Agric. Res., 2(3):215–221 

  • Haggag, W. M. and M. Abo EI Soud (2012). Production and optinization of Pseudomonas fluorecence biomass and metabolites for biocontrol of suore strawberry grey mould. American Journal of Plant Sciences. 3:836-845. 

  • Mojtaba, Y. R. and N. Heshmatopure (2013). The role of Pseudomonas fluorescence strains ingrowth and phosphate concentration of rape seed (Brassica napus L.). Iranian Journal of plant physiology. 3(4):833-853. 

  • Ardebili, Z. O., Ardebili, N.O., Mahdi, S.M. and Hamdi (2011). Physiological effects of Pseudomonas fluorescence CHAO on tomato (Lycopersicon esculentum mili). Plant and its possible impact on Fusarium oxysporumf. sp. Lycopersici. Australian Journal of Crop Science. 5(12): 1631-1638.